
 

 
 

Custodia Security 
 
 
 

 
 
 
 
 
 
 
 
 

Sting Vault Review 
Conducted By: Ali Kalout, Ali Shehab 



 

Contents 
 

1. Disclaimer 3 
2. Introduction 3 
3. About Sting 3 
4. Risk Classification 4 

4.1. Impact 4 
4.2. Likelihood 4 
4.3. Action required for severity levels 5 

5. Security Assessment Summary 5 
6. Executive Summary 5 
7. Findings 7 

7.1. High Findings 7 
[H-01] Strategies don’t handle Infrared Vaults’ Extra Rewards 7 
[H-02] Retiring a strategy discards remaining token balances 7 
[H-03] Unclaimed LP Pool Profits (Kodiak/BEX) 8 

7.2. Medium Findings 9 
[M-01] Withdraw missing whenNotPaused 9 
[M-02] require(msg.sender == tx.origin) blocks automation 9 
[M-03] Withdraw fee collected but unused 10 
[M-04] chargeFees() overcharges due to idle WBERA 10 

7.3. Low Findings 11 
[L-01] getPricePerFullShare can't handle LPs with decimals != 18 11 
[L-02] chargeFees() sends rewards to vault when vault is caller 11 
[L-03] Replace approve(0) with forceApprove() 12 
[L-04] securityFee is not updatable 12 

 

 

 

 

 

 

 

 



 

1. Disclaimer 
 

 
A smart contract security review cannot ensure the absolute absence of 
vulnerabilities. This process is limited by time, resources, and expertise and 
aims to identify as many vulnerabilities as possible. We cannot guarantee 
complete security after the review, nor can we assure that the review will 
detect every issue in your smart contracts. We strongly recommend 
follow-up security reviews, bug bounty programs, and on-chain monitoring. 
 

2. Introduction 
 

 
Custodia conducted a security assessment of Sting’s smart contract 
ensuring its proper implementation. 
 

3. About Sting 
 

 
Sting is a yield optimization system consisting of vault contracts and 
strategy contracts. The system allows users to deposit funds which are 
then deployed to generate yield according to the active strategy. 
 
 
 
 
 
 
 
 
 



 

4. Risk Classification 
 

 

Severity Impact: High Impact: Medium Impact: Low 

Likelihood: High Critical High Medium 

Likelihood: Medium High Medium Low 

Likelihood: Low Medium Low Low 
 
 

4.1. Impact 
 

● High: Results in a substantial loss of assets within the protocol or 
significantly impacts a group of users. 

● Medium: Causes a minor loss of funds (such as value leakage) or 
affects a core functionality of the protocol. 

● Low: Leads to any unexpected behavior in some of the protocol's 
functionalities, but is not critical. 

 

4.2. Likelihood 
 

● High: The attack path is feasible with reasonable assumptions that 
replicate on-chain conditions, and the cost of the attack is relatively 
low compared to the potential funds that can be stolen or lost. 

● Medium: The attack vector is conditionally incentivized but still 
relatively likely. 

● Low: The attack requires too many or highly unlikely assumptions, or 
it demands a significant stake by the attacker with little or no 
incentive. 

 
 



 

4.3. Action required for severity levels 
 

● Critical: Must fix as soon as possible 
● High: Must fix 
● Medium: Should fix 
● Low: Could fix 

 

5. Security Assessment Summary 
 

Duration: 03/03/2025 - 07/03/2025 
Repository: JohnJurdak/StingSC 
Commit:  79e34f01ffd94ead2787b31aef4dcdb9d461dfec 

● src/* 
 

6. Executive Summary 
 

Throughout the security review, Ali Kalout and Ali Shehab engaged with 
Sting’s team to review Sting. During this review, 11 issues were uncovered. 
 

Findings Count 
 

Severity Amount 

Critical N/A 

High 3 

Medium 4 

Low 4 

Total Finding 11 
 
 
 



 

Summary of Findings 
 

ID Title Severity Status 

H-01 Strategies don’t handle Infrared Vaults’ Extra 
Rewards 

High Resolved 

H-02 Retiring a strategy discards remaining token balances High  Resolved 

H-03 Unclaimed LP Pool Profits (Kodiak/BEX) High Resolved 

M-01 Withdraw missing whenNotPaused Medium Resolved 

M-02 require(msg.sender == tx.origin) blocks 
automation 

Medium Resolved 

M-03 Withdraw fee collected but unused Medium Acknowledged 

M-04 chargeFees() overcharges due to idle 
WBERA 

Medium Resolved 

L-01 getPricePerFullShare can't handle LPs 
with decimals != 18 

Low Resolved 

L-02 chargeFees() sends rewards to vault 
when vault is caller 

Low Resolved 

L-03 Replace approve(0) with forceApprove() Low Resolved 

L-04 securityFee is not updatable Low Resolved 

 
 
 
 
 
 
 
 
 
 
 
 



 

7. Findings 
 

7.1. High Findings 

[H-01] Strategies don’t handle Infrared Vaults’ Extra Rewards 
 

Severity:  
High 
 
Description: 
Infrared vaults return rewards in multiple tokens, 
https://github.com/cantina-competitions/infrared-contracts/blob/65de7c256da60721a4ea
6129bd8ed62815b260bc/src/core/InfraredVault.sol#L175-L177. However the strategies 
only account for rewards in iBGT.  
Forcing the other rewards to be lost forever. 
 
Recommendations: 
Fetch and handle all reward tokens dynamically: 
 
address[] memory rewards = IInfraredVault(lpVault).getAllRewardTokens(); 

for (uint i = 0; i < rewards.length; i++) { 

    uint256 balance = IERC20(rewards[i]).balanceOf(address(this)); 

    if (balance > 0) { 

        // swap or transfer based on desired logic 

    } 

} 
 

[H-02] Retiring a strategy discards remaining token balances 
 

Severity:  
High 
 
Description: 
When retireStrat is called, tokens like WBERA, rewardToken, LP0, LP1 are left in 
the strategy contract. These unaccounted balances are not returned to the vault. 
 
function retireStrat() external { 

    require(msg.sender == vault, "!vault"); 

https://github.com/cantina-competitions/infrared-contracts/blob/65de7c256da60721a4ea6129bd8ed62815b260bc/src/core/InfraredVault.sol#L175-L177
https://github.com/cantina-competitions/infrared-contracts/blob/65de7c256da60721a4ea6129bd8ed62815b260bc/src/core/InfraredVault.sol#L175-L177


 

 

    IInfraredVault(lpVault).exit(); // claim all rewards and withdraw from pool 

 

    chargeFees(); 

    addLiquidity(); 

 

    uint256 pairBal = IERC20(lpPair).balanceOf(address(this)); 

    IERC20(lpPair).transfer(vault, pairBal); 

} 

 
Recommendations: 
Safely transfer all non-zero token balances back to the vault: 
 
function _transferRemaining(address token) internal { 

    uint256 bal = IERC20(token).balanceOf(address(this)); 

    if (bal > 0) IERC20(token).safeTransfer(vault, bal); 

} 

 

_transferRemaining(lpToken0); 

_transferRemaining(lpToken1); 

_transferRemaining(wbera); 

_transferRemaining(rewardToken); 
 

[H-03] Unclaimed LP Pool Profits (Kodiak/BEX) 
 

Severity:  
High 
 
Description: 
Profits accrued in BEX or Kodiak pools are not claimed unless exitPool() or 
removeLiquidity() is explicitly called. This causes loss of realized profit. 
 
Recommendations: 
Add logic to realize pool rewards during retireStrat(): 
 
// Kodiak 

IIslandRouter(islandRouter).removeLiquidity(...); 

 

// BEX 

IBexVault(bexVault).exitPool(poolId, ...); 



 

 
7.2. Medium Findings 

[M-01] Withdraw missing whenNotPaused 
 

Severity:  
Medium 
 
Description: 
Users can still withdraw while the vault is paused, potentially violating the intent of the 
pause functionality. 
 
Recommendations: 
Add the whenNotPaused modifier: 
 
function withdraw(uint256 _shares) public nonReentrant whenNotPaused { … } 

 

[M-02] require(msg.sender == tx.origin) blocks 
automation 

 
Severity:  
Medium 
 
Description: 
Prevents contract-based callers like vaults or automated harvesters, limiting 
composability. 
 
Recommendations: 
Remove this restrictive check: 
 
require(msg.sender == tx.origin, "!vault"); // REMOVE 

 



 

 

[M-03] Withdraw fee collected but unused 
 

Severity:  
Medium 
 
Description: 
securityFee is deducted on withdraw, but left idle in the strategy contract, not sent or 
burned. 
 
Recommendations: 
Handle this security or send it to some fee recipient. 
 

[M-04] chargeFees() overcharges due to idle WBERA 
 

Severity:  
Medium 
 
Description: 
Idle WBERA in the contract inflates the fee calculation when charging from swapped 
amounts. 
 
Recommendations: 
Use delta accounting: 
 
uint256 wBeraBalBefore = IERC20(wbera).balanceOf(address(this)); 

 

uint256 toWbera = (IERC20(rewardToken).balanceOf(address(this)) * totalFee) / PERCENT_DIVISOR; 

IUniswapV2Router02(uniRouter).swapExactTokensForTokensSupportingFeeOnTransferTokens( 

    toWbera, 0, rewardTokenToWberaRoute, address(this), block.timestamp + 600 

); 

 

uint256 wBeraBal = IERC20(wbera).balanceOf(address(this)) - wBeraBalBefore; 

 

 

 

 

 

 



 

 

7.3. Low Findings 

[L-01] getPricePerFullShare can't handle LPs with 
decimals != 18 

 
Severity:  
Low 
 
Description: 
The return value will be inaccurate for LP tokens that use decimals other than 18, 
leading to incorrect vault share pricing. 
 
Recommendations: 
Normalize both balance and totalSupply to a common base to avoid decimal 
mismatch: 
 
function getPricePerFullShare() public view returns (uint256) { 

    return totalSupply() == 0 

        ? 1e18 

        : (balance() * 1e36) / (totalSupply() * 10 ** want().decimals()); 

} 

[L-02] chargeFees() sends rewards to vault when vault is 
caller 

 
Severity:  
Low 
 
Description: 
When the vault calls retireStrat(), msg.sender is the vault, and fees meant for a 
user are sent to the vault. 
 
Recommendations: 
Handle the vault case explicitly: 
 
IERC20(wbera).safeTransfer( 

    msg.sender == vault ? treasury : msg.sender, 



 

    callFeeToUser 

); 

 

[L-03] Replace approve(0) with forceApprove() 
 

Severity:  
Low 
 
Description: 
The manual approve(0) + approve(max) pattern is outdated and prone to race 
conditions and weird ERC20s. 
 
Recommendations: 
Use OpenZeppelin’s forceApprove() pattern: 
 
SafeERC20.forceApprove(IERC20(token), spender, amount); 

 
 

[L-04] securityFee is not updatable 
 

Severity:  
Low 
 
Description: 
There's no function to adjust the securityFee, limiting configuration. 
 
Recommendations: 
Add an update method with max cap: 
 
function updateSecurityFee(uint256 _fee) external onlyOwner { 

    require(_fee <= MAX_FEE, "too high"); 

    securityFee = _fee; 

} 

 


	 
	 
	Custodia Security 
	Contents 
	1. Disclaimer 
	2. Introduction 
	3. About Sting 
	4. Risk Classification 
	4.1. Impact 
	4.2. Likelihood 
	4.3. Action required for severity levels 

	5. Security Assessment Summary 
	6. Executive Summary 
	 
	7. Findings 
	7.1. High Findings 
	[H-01] Strategies don’t handle Infrared Vaults’ Extra Rewards 
	[H-02] Retiring a strategy discards remaining token balances 
	[H-03] Unclaimed LP Pool Profits (Kodiak/BEX) 

	 
	7.2. Medium Findings 
	[M-01] Withdraw missing whenNotPaused 
	 
	[M-02] require(msg.sender == tx.origin) blocks automation 
	 
	[M-03] Withdraw fee collected but unused 
	[M-04] chargeFees() overcharges due to idle WBERA 

	7.3. Low Findings 
	[L-01] getPricePerFullShare can't handle LPs with decimals != 18 
	[L-02] chargeFees() sends rewards to vault when vault is caller 
	[L-03] Replace approve(0) with forceApprove() 
	[L-04] securityFee is not updatable 



